Progress Report – May 23th
Magdalena Olewinska								EECS 372
SUMMARY OF CHANGES
· Fixed queueing so customers are serviced in order
· (ERROR print statement otherwise)
· Fixed time step:
· Because customers have 1-100 items, in order create transactions of 1-5 minutes of checkout time per customer, each station has scan-rate of 9 to 11 items per tick.
· Model runs for at least 1440 ticks which translates to a 24 hour time period as 1 tick = 1 min. At ticks < 1440 customers are free to arrive; doors will close at 1440, store will close (model will stop) at ticks > 1440 when all customers have been checked out.
· Fixed user inputs
· Only allow user inputs to initialize values so changing sliders mid model run will avoid incorrectly affecting statistics and data
· Added show-label to mark customers with wait-number, grocery-item count, or no label
· for debugging purposes also for user interest
· Added oscillating arrival schedules for customers
· values 0 to 2 then back down to 0 so pattern of [0 1 2 1] repeated
· Added user-controlled arrival schedule
· amount of customers arriving per tick is equal to the floor() of the value provided in the #-customers-arriving input box
· for debugging purposes and more flexibility if user wanted to replicate uniform schedule but with different value than 1 customer per tick
· Add store layouts of self-checkout stations.
· Add switch to allow dynamic opening and closing of checkout stations.
· At every half hour, if this option is switched on will access throughput of each station
· If efficient: no changes
· If not used often: close station, customers in line will go back to “no-line” state and have to pick a new line
· If used too often: open new station of same type if max amount of station type not exhausted, last half of customers in line will change their location to this newly opened station
· Add cost of checkout stations: hourly-rate is pay per employee
· Express checkout = X per hour (assume 1 employee)
· General checkout = 2X per hour (assume 1 employees: bagger + scanner)
· Self-checkout = X / # of self-checkouts open (assume 1 employee manages all self-checkouts)
KEY FOR PROGRESS
GREEN WORDS = NEW		BLUE WORDS = CHANGED		RED WORDS = REMOVED
Agent behavior: How do the agents behave/work?
There are 3 types of patches at the moment: general check-out (blue), X items or fewer check-out (green), self-check-out (yellow). There are customers with a randomly assigned item count assigned from 1 to 100. Customers choose the shortest line available upon their arrival that they are eligible for and move to the end of the line. Customers will only additionally consider self-check-out stations as one of the options based on a probability. Max capacity of the store is set to be 500 customers at any given time.
System behavior: How does the overall system behave/work?
[bookmark: _GoBack]Need to tune parameters so get some stabilization or interesting behavior for wait times in customers. When dynamic layout enabled, sometimes the performance is worse. Need to analyze/debug to see why this is and how to make dynamic layouts a more optimal solution.
Comparing the average wait time with the same parameters for multiple runs is not similar as I expected. Below is a screenshot from tick: 7816. This is not a realistic scenario as there are customers waiting in long lines while there are shorter lines available than their current line. The basic heuristic for choosing a checkout station either will need to be modified or switching checkout stations will have to be implemented for the customers.
Rationale for agent rules: Why did you give the agents these rules?
Customers enter line at station that has the fewest amount of people that have already arrived at the checkout station. If a customer qualifies for the X items or fewer line, will consider these checkout stations as additional options and weigh them equally. With a probability, will consider the self-checkout station and will weigh this option in the same manner as the others. This is a basic heuristic for selecting a line.
Checkout patches will dynamically close if for the last Y amount of ticks the number-of-customers-helped has not increased and will dynamically open a given type of checkout station if the average-wait time for that type of checkout station is above Z amount of ticks.
Checkout Patches: If customer standing on it, decrease the amount of groceries by the scan rate per tick. They have max-items they can handle that correspond to the station type. They track customers helped and items scanned.
Customers: Customers have between 1-100 groceries and start off with “no-line” and as a dark grey color. They select a station to go that is capable of handling that many items and has the fewest customers already “in-line”. At that point, they mark themselves as having “found-line”. Customers head toward the checkout patch and when they arrive mark themselves as “in-line”, turn black, and receive a wait-number indicating their place in line. They keep moving down the line until find an empty patch. On each tick, if patch in front of it is empty, move up and decrease wait-number. They increase their “wait-time” at every tick they remain “in-line”. They mark themselves as “checking-out” only if the patch in front of them is their checkout location, there are no other customers there, and they have the minimum customer wait-number.
These rules were given to set up and test the flow of the model. More decisions based on user input or probability will be implemented to reflect realistic scenarios.
Model output: Have you developed new measures for the output? Do you think your model currently provides a good description of the system’s behavior? Why or why not?
Currently the model outputs how many customers are at the store at a given time, the closing-time (after 24 hours of open doors when final customer is checked out), and the accumulating current-cost of the given layout.
The model tracks average wait time of customers in line over the duration of the model (also broken down into per checkout station). It also tracks the cost of operation based on the number and types of checkout stations open. (currently this is stable as the store layout is static). Eventually these measures will allow analysis of tradeoffs between customer wait time and cost of operation per layouts chosen. Checkout stations incur an hourly (per 60 tick) cost. General stations assume 2 employees so 2X hourly rate; express stations assume 1 employee so X hourly rate; self-stations assume 1 employee shared over all self-stations so X/total self-stations open. Additionally, the user can track the longest line at any given moment.
Questions: What questions do you have about your model?
How to implement dynamic opening and closing of checkout stations in a realistic manner; do specific throughput details about existing checkout stations need to be monitored?
How to verify model? How to validate model?
What kind of variables will be accessible to the user? What kind of measurements will be the most interesting to see and how to output them so easy to understand?
Next steps: Briefly list your next steps for improving the model.
· Add store layouts of one line that leads to multiple stations.
· Use metrics of total customers helped and throughput in more meaningful way.
· Find parameters and values that accurately depict grocery store phenomenon.
· Review code: add additional comments and ensure NetLogo coding style is followed.
· Fill out Info Tab
· Create Design Document/Final Report
Model Analysis: What conclusions can you draw from the model’s output?
No conclusions can be drawn yet as the model is incomplete in functionality.
