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1. INTRODUCTION 

At the highest level, chemical reactors are straightforward: molecules enter, react to 

form new molecules, then exit. Reactors are, however, complex systems operating at the 

confluence of numerous phenomena originating at the molecular scale. Every reaction 

engineering course begins with several chapters on reaction kinetics – the mechanisms governing 

the rate at which individual molecules react to form new molecules. The overall rate of 

production, however, also depends upon fluid mechanics and bulk diffusion, the two processes 

that determine the residence time of reactants within the reactor. As reactor designs traverse a 

vast operating space, modeling complexity rapidly increases and these three competing 

phenomena become increasingly difficult to distinguish and interpret. This project strives to 

connect these phenomena to macroscopic reactor performance through the development and 

validation of an agent-based reactor model. Furthermore, the model is designed to serve as an 

instructional tool for chemical engineering students regarding the complex interplay of bulk 

flow, mixing, and reaction within dynamic reactors. 

2. MOTIVATION 

2.1 Theoretical Background on Dispersion Models 

The convection-dispersion-reaction model combines reaction kinetics with both 

convective transport and a diffusive dispersion term. Reaction mechanisms assume many forms, 

but at their most elementary level they require the collision and/or correct orientation of reactant 

molecules. Convection is the transport of material due to bulk inertial flow. Dispersion is a 
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macroscopic phenomenon encompassing non-idealities within a reactor that promote mixing, 

namely viscous effects and bulk diffusion. Its proposed mechanism is only defined at the macro-

scale, where downhill concentration gradients drive dispersive flux in a manner directly 

analogous to molecular diffusion. 

Within these convection-dispersion-reaction systems, the extent to which a reaction 

proceeds depends on the relative influence of each phenomenon [1]: 
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(1) 

where CA is the dimensionless concentration of a reactant species, n is the reaction order, z is a 

dimensionless length coordinate, t is dimensionless time, and NPe and NDa are the dimensionless 

Peclet and Damkohler numbers. The two numbers relate the characteristic time scales associated 

with the three phenomena of interest:  
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(2) 

 
where D is the dispersion coefficient, u is the linear flow velocity, L is the reactor length, k is the 

rate constant, CA0 is the inlet concentration, and 𝜏 = !
!
 is the space-time. The length coordinate, 

time coordinate, and concentrations in Equation 1 are non-dimensionalized by the reactor length, 

space-time, and inlet concentration, respectively. While available, numerical solutions to this 

model have inspired large volumes of work due to their mathematical complexity [2,3,4,5]. In a 

number of limiting cases the model converges to the idealized models familiar to all chemical 

engineers, namely [6]: 
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• NPe à ∞ : Ideal Plug Flow (uniform cross-section perpendicular to flow) 
• NPe à 0 : Ideal Mixed Flow (uniform concentration throughout reactor) 
• NDaà ∞ : Complete consumption of reactant 
• NDa à 0 : No Reactant is consumed 

 
These limiting cases are easy to independently model and understand, but real reactors 

operate somewhere between them. The solution space of Equation 1 is characterized by the 

Peclet and Damkohler numbers. For values of NPe > 100 the residence times of molecules are 

Gaussian distributed with variance inversely proportional to the Peclet number [7]. The 

distribution converges to the Dirac delta function as NPe à ∞ [8]. As NPe à 0 the residence time 

distribution (RTD) decays exponentially. These limiting RTDs are readily derived from the Ideal 

PFR and Ideal CSTR models, and provide a standard against which dispersion models may be 

visually and statistically validated [9]. 

 
2.2 Modeling Objective 

Through the use of simple agent-level rules to reproduce dispersion models, the 

primary goal of this work is to paint a more intuitive portrait of convection-dispersion-reaction 

systems. The model operates at the macro-scale, but employs a number of micro-scale 

mechanisms to demonstrate the origin of emergent macroscopic behavior. In particular, 

molecular collisions and random-walk diffusion are proposed to yield the elementary rate laws 

and dispersive mixing characteristic of real systems. Despite its elementary foundations, the 

model should also be equipped to design and simulate real reactors. It is unlikely that an agent-

based model could ever displace the numerical approach due to computational cost, but it could 

serve as a first-pass before significant resources are invested in complete model development.  

The agent-based approach readily lends itself to visualization and user-interaction. A 

successful agent-based dispersion model would be an invaluable educational tool, particularly at 
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the undergraduate level where systems of partial differential equations are mathematically 

intractable. By enabling students to manipulate parameters in an environment with immediate 

visual feedback, the barrier to understanding these systems could be dramatically lowered. In 

particular, the ease of code development in NetLogo lends itself to further extensions of the 

model by students themselves.  

 

2.3 Literature Review 
 

The convection-dispersion-reaction model presented here comprises a subset of a 

broader class of convection-diffusion-reaction problems. These models enjoy wide use 

throughout the scientific community, in fields ranging from environmental to biomedical 

engineering. Tzatchov et al used Equation 1 to model the dynamic concentration of chlorine and 

fluoride in water distribution networks, employing a numerical Green’s function technique to 

solve the system of equations describing the series of water channels [10]. Cameron et al solved 

an analogous form of Equation 1 to model the absorption of pesticides and nutrients within soil 

[11]. Their reaction term includes a rate expression reminiscent of the Langmuir-Hinshelwood 

kinetics used to describe heterogeneous catalytic reactions. Squires et al use the model to 

characterize various regimes of micro-sensor binding kinetics, as the ability of microarrays to 

monitor changes in DNA or protein activity are strongly dependent on the interplay between 

convection, diffusion, and adsorptive-reaction near the microarray surface [12]. Additional 

modeling applications include natural-convection driven polymerase chain-reaction, aquatic 

species population dynamics, and radioactive wastewater disposal [13,14,15]. The breadth of 

applications of the model suggests that an interpretable agent-based representation may prove 

valuable beyond the chemical engineering community. As a modeling tool, the agent-based 
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approach may be particularly amenable to fields with inherently higher noise and consequently 

lower demand for accuracy than chemical reactor design, such as atmospheric or ocean science. 

  

Despite its adoption by many hard, soft, and social sciences communities, a dearth of 

relevant literature suggests that agent-based modeling has not gained significant traction as a 

reactor modeling platform. At the smaller scale, the NetLogo Models Library contains several 

models connecting molecular interactions to emergent macroscopic kinetics and equilibrium 

states [16, 17, 18, 19]. At the larger scale, agent based models have been employed for 

optimization of batch reactor scheduling [20]. There are, however, two notable reactor models. 

Pannala et al studied the dynamics of fluidized bed reactors by using thousands of agents to 

represent rapidly colliding solute-filled bubbles [21]. The approach successfully reproduces an 

emergent oscillatory “slugging” phenomenon characteristic of real systems. The second 

exception is an agent-based model of an anaerobic sludge bioreactor published by Pereda and 

Zamarreño [22]. Their model, written in NetLogo, describes a stirred batch reactor in which 

bacterial growth is driven by uptake of substrate from wastewater. They validate their model 

against conventional Monod kinetics in a procedure similar to the validation method employed in 

this paper. While their model succeeds in reproducing Monod growth kinetics, its domain is 

constrained to a batch system in which perfect mixing is achieved. This corresponds to the NPe 

à 0 limit introduced in the Background section, and is of little use in analyzing continuous flow 

systems. Real anaerobic sludge bioreactors do not typically operate near this limit, presenting a 

case in which a convection-dispersion-reaction model would be of particular utility. To the 

author’s knowledge, this is the first agent-based approach to modeling a reactor under the 

convection-dispersion-reaction model framework. 
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3. METHODS 

Both models were developed in NetLogo. In modeling any flow system, the observer 

may assume either a mobile or stationary frame of reference. In fluid mechanics, these are 

commonly known as the Lagrangian and Eulerian viewpoints. The former describes the dynamic 

behavior of individual fluid elements, while the latter describes the behavior observed at a 

particular point in space. In the present work, separate agent-based models have been developed 

for each frame of reference. The Lagrangian frame of reference serves as the primary model 

because its mobile viewpoint is more conducive to monitoring the residence time distributions 

generated by dispersive mixing. The Eulerian model serves here as a validation tool, but has 

significant potential utility and is further discussed in the Complementary Model section.  

3.1 Primary Model: Stochastic Reactions and Dispersion 

All chemical species are represented by mobile turtles in the primary model. While 

the turtles act as discrete particles, each turtle does not represent an individual molecule. 

Molecules exist on a length scale ~1010 times smaller than reactors, and implementing their 

mechanistic physical behavior (i.e. Brownian motion due to molecular bombardment) would be 

computationally infeasible in a model that also exhibits macroscopic behavior on the length scale 

of the reactor, such as convection and dispersive mixing. Instead, each turtle represents a 

quantum of molecules. Reactants are blue, products are red, and inert species are yellow. 

Molecular scale mechanisms are applied to these quanta, resulting in emergent behavior at the 

length scale of the reactor. 

The model consists of a single reactor oriented as shown in Figure 1. The feed stream 

of pure reactant enters through the left boundary, flows through the reactor, and exits through the 



	
   7	
  

right boundary. To setup, the patches lining the entrance to the reactor are asked to feed the 

reactor by sprouting reactants with a residence time of zero. Alternatively, the entire reactor may 

be filled with reactants to start. At each tick, all of the quanta undergo convection, dispersion, 

and reaction. Any quanta transported beyond the reactor exit are catalogued as effluent and asked 

to die. The residence times of the quanta are incremented before the reactor is fed more reactant. 

 

 

 

 

Figure 1: Visualization of flow reactors for the (A) primary turtle-based stochastic model 
and (B) complementary patch-based deterministic model. Feed enters the reactor at the 
left boundary, and effluent leaves at the right boundary. Reactants are colored blue while 
products are colored red.  

The mechanisms selected for the three phenomena are central to the model’s function. 

Convection is the transport of material due to bulk flow. In this model, a user-specified uniform 

flow velocity sets the individual velocity of each quantum. Each quantum is assumed to conserve 

its momentum, with no viscous momentum transfer between quanta. This assumption is 

consistent with the dispersion model in which viscous effects are captured by the dispersive 

mixing term. Most reactors also operate in a highly turbulent flow regime where a radially 

uniform flow profile holds. At each tick, the quanta move directly downstream by a distance 

equal to their flow velocity. 

Dispersion encompasses the viscous and diffusive effects that lead to mixing within a 

reactor. The phenomenon is only defined at the macroscopic scale, where dispersive material 

fluxes flow down local concentration gradients. This behavior is, however, identical to molecular 

diffusion – the random walk process by which mass is transported from high to low regions of 
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concentration. Consequently, dispersion is implemented with a 1-D random walk. At each tick, 

the quanta randomly step forward or backward by a distance set by their user-specified 

diffusivity. 

The stochastic nature of chemical reactions at the molecular scale is preserved in the 

model. At each tick, the probability of a reaction occurring is determined by one of three 

reactions mechanisms made available to the user. The first mode, labeled concentration-

independent, allows the user to specify a fixed reaction probability. In practice, reactions may or 

may not require collisions to proceed but will require a particular orientation. The concentration-

independent mechanism corresponds to a scenario in which only molecular orientation matters. 

Orientation is effectively random, leading to a constant probability of reaction for this 

mechanism. A second concentration-dependent mode allows the user to specify a fixed reaction 

probability, as well as a collision-radius. Here, the likelihood of correct orientation is multiplied 

by the number of other reactants found within the collision radius. This mechanism corresponds 

to a reaction that requires collisions in order to exceed an activation barrier. The probability of 

correct orientation remains constant, but the particles’ chances of undergoing a collision increase 

linearly with the local availability of other reactants. Notably, these are molecular mechanisms 

applied to much larger scale quanta within the model. Validation is required to determine 

whether these mechanisms produce realistic behavior overall. 

Most of the results exhibit substantial noise due to the stochastic nature of the model. 

To combat this, all performance metrics are collected as a moving-average over a user-specified 

sampling window. The sliding window helps reduce sensitivity to noise, but decreases the 

response time of the system. Small (~5 s) window sizes should be used when dynamic behavior 

is of interest. 
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As discussed in the Complementary Model section, a more deterministic model 

operating in the Eulerian frame of reference was developed in parallel with the present stochastic 

turtle-model. This second model allows explicit definition of deterministic rate equations. The 

two models are designed to work in parallel, with Import/Export buttons enabling exchange of 

operating parameters and concentration profiles between the two. By importing the stochastic 

model’s parameters and results into the deterministic model, the rate expression can be tuned to 

minimize the distance between reactor profiles. This scheme allows for a one-to-one mapping of 

the stochastic reaction mechanisms to explicit rate laws.  

3.2 Complementary Model: Deterministic Reactions and Dispersion 

A second model was developed from a static frame of reference in which properties 

are assigned to a point in space rather than individual molecular quanta. In this model a patch 

represents a point in the reactor. Each patch has properties corresponding to the concentration of 

all chemical species, and reaction kinetics are specified in the deterministic elementary 𝑟! = 𝑘𝐶!! 

form. In this model, convection is modeled by asking each patch to inherit new properties from 

its upstream neighbor while passing its old properties to its downstream neighbor. Dispersion is 

modeled through NetLogo’s built-in diffusion mechanism.  

This approach is more closely representative of the conventional convection-

dispersion-reaction model, as it creates a near-continuous space rather than discretizing the 

system into discrete particles representative of ~1020 molecules. Kinetics are specified in 

conventional elementary form, enabling direct input of rate parameters for a real system.  

 

4. RESULTS AND ANALYSIS 
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Analyses were initially performed in NetLogo then repeated in Matlab 2014a in order to make 

use of its extensive library of plotting features. 

4.1 Model Verification 

In order to verify that the model’s implementation functions as intended, each of the 

three main phenomena must be scrutinized. Convection describes the bulk transport of fluid, and 

is most easily verified during startup. Beginning with an empty reactor, in the limit of no 

dispersion the fluid front should move toward the reactor exit with uniform velocity. The time to 

reach the exit should exactly equal the space-time, τ. Dispersion is implemented as a 1-D random 

walk taken by each quantum of molecules. During startup, this should result in some particles 

jumping ahead and some jumping behind the fluid front. The noise near the leading front should 

also increase as the front moves down the length of the reactor, as the particles are allowed more 

time to undergo their random walk. For the reaction mechanisms, the rate should increase with 

increasing probability of correct orientation, or reaction probability. At steady state, higher rates 

should yield higher product concentrations in less time. All three of these phenomena are shown 

visually in Figure 2, verifying that the core features of the model are implemented as intended. 

 

 

 

 

 

 

 

Figure 2: Verification of the (A) convection, (B) dispersion, and (B) reaction 
mechanisms. Convection moves the fluid front through the reactor during startup, 
random-walk dispersion introduces noise on the leading edge of the fluid front, and 
increasing reaction probability (later shown to be k) increases product concentration. 
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4.2 Model Validation: Testing the Limits of the Dispersion Model  

A functioning dispersion model must span the range of behavior between the limiting 

cases discussed in Section 2.1. To validate the agent-based model, concentration profiles 

obtained in or near these limits are compared with the analytical solutions in Table 1. The 

concentration profiles obtained by both models in these limiting regions are shown in Figure 3. 

By visual inspection, all of the profiles conform to those predicted by the analytical solutions of 

Equation 1. While the NPeà0 limit produces the expected uniform steady-state concentration 

profile, the concentrations are lower that those obtained under ideal plug flow conditions. Some 

reaction engineering insight suggests that this should not happen. Upon closer inspection of the 

model, this discrepancy occurs because the reactor is bounded on a length scale of similar 

magnitude to the random-walk step size, allowing reactants to “diffuse out of the reactor,” 

depleting the steady state concentration. This is a limitation of operating with discretized 

molecular quanta, and suggests that the relationship between the specified reaction probability 

and steady-state concentration loses accuracy in the low Peclet regime. Despite this drawback of 

the random walk dispersion mechanism, the successfully quantitatively reproduces the other 

three limits and qualitative reproduces all of the limits.  

Table 1: Reactant concentration profiles in the limiting cases of Equation 1 

Limit Steady State Conc. Profile Description 

NPe à ∞ 
𝑑𝐶!
𝐶!!

= −𝑁!"𝑧
!!

!
 Ideal Plug Flow 

(order dependent decay) 

NPe à 0 𝐶!! +
1
𝑁!"

𝐶! = 1 Ideal Continuous Stirred Tank 
(uniform profile) 

NDa à ∞ 𝐶! = 0 Complete Conversion 

NDa à 0 𝐶! = 1 No Conversion 
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Figure 3: Validation of the (A) stochastic and (B) deterministic models’ capacities to 
reproduce each of the limiting operating regimes. Each of these profiles correspond to 
one of the analytical solutions in Table 1. The one discrepancy between the two models is 
in the ideal CSTR limit (NPeà0, dashed red line). The lower uniform concentration in the 
stochastic model is explained by a depletion of reactant as the random walk step size 
approaches the length scale of the reactor. 

 

4.3 Dispersion Effects 

Dispersion promotes longitudinal mixing within reactors. As discussed in Section 2.1, 

in convection-dominated regimes (NPe > 100) the residence time distribution is Gaussian, with 

dimensionless variance inversely proportional to the Peclet number. As dispersion increases 

further, the residence times converge to an exponential distribution. The agent-based model was 

used to generate probability density functions for the dimensionless residence time (residence 

time divided by space-time) across a range of dispersion coefficients. The distributions are 

shown in Figure 4A, where the transition from Gaussian to exponential behavior emerges. The 

variance of each distribution is used to calculate the statistical Peclet numbers in Figure 4B. 

These values are presented alongside the actual Peclet numbers calculated according to Equation 

2. The two sets of Peclet numbers appear to diverge near NPe = 10, suggesting that this is a 

transition point where the Gaussian solution breaks down and the variance ceases to be inversely 
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proportional to the dispersion coefficient. This observation is consistent with Figure 4A, where 

the NPe ~ 12 case shows the first signs of tending toward an exponential distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Influent of dispersion on residence time distributions within the reactor. (A) 
Probability density functions for the dimensionless residence time across a range of 
dispersion coefficients. (B) Comparison of Peclet numbers calculated either statistically 
or using Equation 2. The inverse relationship between sample variance and dispersion 
coefficient appears to fail near NPe ~ 10, which corresponds to a distinct transition away 
from Gaussian behavior. (C) Visualization of dispersive spreading within the reactor. 

For undergraduates, it is not always clear what happens within the reactor that leads 

to these distributions. By pulsing a detectable inert tracer into the reactor feed, the characteristic 

spreading that is driven by axial dispersion can be visualized. This is how residence time 

distributions are obtained in practice, and a series of experiments are shown for varying 

dispersion coefficients in Figure 4C. 
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4.4 Reaction Mechanisms and Rate Laws 

The stochastic model allows for two distinct reaction mechanisms, while the 

deterministic model allows the user to specify an elementary rate law. The import/export features 

enable direct comparison of the resultant concentration profiles, and allow for mapping the 

stochastic model’s stochastic reaction mechanisms to deterministic rate expressions. Upon 

synchronizing the models, it is immediately evident that the reaction probability in the 

“Concentration Independent” mechanism is identical to the rate constant in a first order rate law. 

This revelation is demonstrated in Figure 5A, and suggests that the rate of a first order reactions 

is purely dependent on molecules having the correct orientation. Having taken several reaction 

engineering and kinetics courses at both the undergraduate and graduate levels, I find it quite 

surprising that I have never seen first order rate laws presented in this way. 

A similar procedure was applied to the concentration dependent mechanism in the 

stochastic model, but no obvious connection was revealed. The concentration profile produced 

by the concentration dependent mechanism exhibits a rapid drop in concentration near the 

reactor entrance that quickly levels off to near-zero rate. This makes sense, as reactants rapidly 

deplete their local availability of other reactants to react with. First and second order analytical 

solutions were fit to the data by varying NDa, but a perfect fit could not be achieved. As seen in 

Figure 5B, the second order rate law provides a better fit. This makes sense, as second order 

elementary reactions require collision of two reacting molecules. 
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Figure 5: Comparison of reaction mechanisms with elementary rate laws. In the NPe à ∞ 
limit, the zero, first, and second order profiles of the deterministic model are analytical 
solutions to the corresponding equation in Table 1. The mechanisms used were (A) 
concentration independent and (B) concentration dependent. In (A), all contours are 
based on the same reaction probability or rate constant, k. The perfect match between the 
concentration independent mechanism and the first order solution is preserved across all 
tested values of k. In (B), both the first and second order analytical models are fit to the 
stochastic data, but a perfect fit could not be achieved.  

 
5. CONCLUSIONS 

In light of the model validation, agent-based modeling appears to be an appropriate 

method of modeling chemical reactors in certain cases. This approach might be favored over 

numerical solutions to Equation 1 in the preliminary design stage where rigorous models are 

unnecessary. Agent-based reactor models might also be well suited to complex bioreactors, 

where growth and metabolic kinetics are not always explicitly defined. The merit of this 

approach requires further investigation of how computational costs scale with increasing model 

complexity. 

During validation the concentration-independent mechanism was mapped to a first 

order rate law. This reaction mechanisms, while based on molecular-scale phenomenon, was 

applied to molecular quanta representing tens of millions of molecules. This result suggests that 

the mechanisms themselves are scalable, and interactions between individual molecules need not 

be applied to individual molecules in order to produce the emergent macroscopic rate laws 
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observed in real systems. The mapping between microscopic mechanisms and macroscopic rate 

laws also suggests that the leading rate constant in elementary rate expression is just the 

probability of correct orientation. This is not how the rate constant is taught in conventional 

kinetics courses, and contributes a novel perspective on the meaning of kinetic rate constants. 

The primary goal of the present model is to create a platform on which undergraduate 

students can develop their intuition regarding convection, dispersion, and reaction in flow 

reactors. A version of the turtle-based model has been demonstrated to one of the reaction 

engineering course instructors at Northwestern, and she has expressed interest in incorporating 

the model into the course curriculum next year. In this regard, the project has been a success. 

 

6. FUTURE WORK 

Both models leave ample room for extension. In both cases, the reaction mechanisms 

could be made increasingly complex in order to reflect real system chemistries. For instance, the 

inclusion of a reversible pathway would extend the system domain to include equilibrium-limited 

reactions where the tradeoffs between chemical and kinetics and thermodynamics are relevant. 

Going further, the models could be designed to import a stoichiometric matrix coding for an 

entire reaction network. These would be relatively simple extensions to implement, but were 

omitted from the current work in order to avoid obfuscating the purpose of this model. 

The scope of the dispersion model explicitly excludes viscous effects, as they are 

encapsulated by the dispersion term of Equation 1. Viscous effects could be implemented if they 

were of interest in a convection-diffusion-reaction model, perhaps due to operation in a laminar 

flow regime or entirely different geometry. This would be particularly amenable to the turtle-

based model, as each turtle could be assigned a momentum property. Turtles might transmit their 
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momentum via viscous diffusion to adjacent turtles, with some form of no-slip condition 

implemented near the walls. Because viscous effects break radial symmetry, molecular diffusion 

would require at least a 2-D implementation. 
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