GasLab Gas in a Box (Perspective Demo)

GasLab Gas in a Box (Perspective Demo) preview image

1 collaborator

Uri_dolphin3 Uri Wilensky (Author)

Tags

gaslab 

Tagged by Reuven M. Lerner over 11 years ago

particles 

Tagged by Reuven M. Lerner over 11 years ago

Model group CCL | Visible to everyone | Changeable by group members (CCL)
Model was written in NetLogo 5.0.4 • Viewed 290 times • Downloaded 57 times • Run 0 times
Download the 'GasLab Gas in a Box (Perspective Demo)' modelDownload this modelEmbed this model

Do you have questions or comments about this model? Ask them here! (You'll first need to log in.)


Comments and Questions

Click to Run Model

globals
[
  tick-delta                                 ;; how much we advance the tick counter this time through
  max-tick-delta                             ;; the largest tick-delta is allowed to be
  box-edge                                   ;; distance of box edge from axes
  init-avg-speed init-avg-energy             ;; initial averages
  avg-speed avg-energy                       ;; current averages
  fast medium slow                           ;; current counts
  percent-slow percent-medium percent-fast   ;; percentage of current counts
]

breed [ particles particle ]
breed [ flashes flash ]
flashes-own [birthday]

particles-own
[
  speed mass energy          ;; particle info
  last-collision
]

to setup
  clear-all
  set-default-shape particles "circle"
  set-default-shape flashes "plane"
  set max-tick-delta 0.1073
  ;; the box size is determined by the slider
  set box-edge (round (max-pxcor * box-size / 100))
  make-box
  make-particles
  update-variables
  set init-avg-speed avg-speed
  set init-avg-energy avg-energy
  reset-ticks
end 

to update-variables
  set medium count particles with [color = green]
  set slow   count particles with [color = blue]
  set fast   count particles with [color = red]
  set percent-medium (medium / ( count particles )) * 100
  set percent-slow (slow / (count particles)) * 100
  set percent-fast (fast / (count particles)) * 100
  set avg-speed  mean [speed] of particles
  set avg-energy mean [energy] of particles
end 

to go
  ask particles [ bounce ]
  ask particles [ move ]
  ask particles
  [ if collide? [check-for-collision] ]
  ifelse trace?
  [ ask first sort particles [ pen-down ] ]
  [ ask first sort particles [ pen-up ] ]
  tick-advance tick-delta
  if floor ticks > floor (ticks - tick-delta)
  [
    update-variables
  ]
  calculate-tick-delta
  ask flashes with [ticks - birthday > 0.4]
    [ die ]
  display
end 

to calculate-tick-delta
  ;; tick-delta is calculated in such way that even the fastest
  ;; particle will jump at most 1 patch length when we advance the tick counter.
  ;; As particles jump (speed * tick-delta) at every clock tick, making
  ;; tick length the inverse of the speed of the fastest particle
  ;; (1/max speed) assures that. Having each particle advance at most
  ;; one patch-length is necessary for it not to "jump over" a wall
  ;; or another particle.
  ifelse any? particles with [speed > 0]
    [ set tick-delta min list (1 / (ceiling max [speed] of particles)) max-tick-delta ]
    [ set tick-delta max-tick-delta ]
end 

to bounce  ;; particle procedure
  ;; get the coordinates of the patch we'll be on if we go forward 1
  let new-patch patch-ahead 1
  let new-px [pxcor] of new-patch
  let new-py [pycor] of new-patch
  ;; if we're not about to hit a wall, we don't need to do any further checks
  if not shade-of? yellow [pcolor] of new-patch
    [ stop ]
  ;; if hitting left or right wall, reflect heading around x axis
  if (abs new-px = box-edge)
    [ set heading (- heading) ]
  ;; if hitting top or bottom wall, reflect heading around y axis
  if (abs new-py = box-edge)
    [ set heading (180 - heading)]

  ask patch new-px new-py
  [ sprout-flashes 1 [
      set color pcolor - 2
      set birthday ticks
      set heading 0
    ]
  ]
end 

to move  ;; particle procedure
  if patch-ahead (speed * tick-delta) != patch-here
    [ set last-collision nobody ]
  jump (speed * tick-delta)
end 

to check-for-collision  ;; particle procedure
  ;; Here we impose a rule that collisions only take place when there
  ;; are exactly two particles per patch.  We do this because when the
  ;; student introduces new particles from the side, we want them to
  ;; form a uniform wavefront.
  ;;
  ;; Why do we want a uniform wavefront?  Because it is actually more
  ;; realistic.  (And also because the curriculum uses the uniform
  ;; wavefront to help teach the relationship between particle collisions,
  ;; wall hits, and pressure.)
  ;;
  ;; Why is it realistic to assume a uniform wavefront?  Because in reality,
  ;; whether a collision takes place would depend on the actual headings
  ;; of the particles, not merely on their proximity.  Since the particles
  ;; in the wavefront have identical speeds and near-identical headings,
  ;; in reality they would not collide.  So even though the two-particles
  ;; rule is not itself realistic, it produces a realistic result.  Also,
  ;; unless the number of particles is extremely large, it is very rare
  ;; for three or more particles to land on the same patch (for example,
  ;; with 400 particles it happens less than 1% of the time).  So imposing
  ;; this additional rule should have only a negligible effect on the
  ;; aggregate behavior of the system.
  ;;
  ;; Why does this rule produce a uniform wavefront?  The particles all
  ;; start out on the same patch, which means that without the only-two
  ;; rule, they would all start colliding with each other immediately,
  ;; resulting in much random variation of speeds and headings.  With
  ;; the only-two rule, they are prevented from colliding with each other
  ;; until they have spread out a lot.  (And in fact, if you observe
  ;; the wavefront closely, you will see that it is not completely smooth,
  ;; because some collisions eventually do start occurring when it thins out while fanning.)

  if count other particles-here = 1
  [
    ;; the following conditions are imposed on collision candidates:
    ;;   1. they must have a lower who number than my own, because collision
    ;;      code is asymmetrical: it must always happen from the point of view
    ;;      of just one particle.
    ;;   2. they must not be the same particle that we last collided with on
    ;;      this patch, so that we have a chance to leave the patch after we've
    ;;      collided with someone.
    let candidate one-of other particles-here with
      [who < [who] of myself and myself != last-collision]
    ;; we also only collide if one of us has non-zero speed. It's useless
    ;; (and incorrect, actually) for two particles with zero speed to collide.
    if (candidate != nobody) and (speed > 0 or [speed] of candidate > 0)
    [
      collide-with candidate
      set last-collision candidate
      ask candidate [ set last-collision myself ]
    ]
  ]
end 

;; implements a collision with another particle.
;;
;; THIS IS THE HEART OF THE PARTICLE SIMULATION, AND YOU ARE STRONGLY ADVISED
;; NOT TO CHANGE IT UNLESS YOU REALLY UNDERSTAND WHAT YOU'RE DOING!
;;
;; The two particles colliding are self and other-particle, and while the
;; collision is performed from the point of view of self, both particles are
;; modified to reflect its effects. This is somewhat complicated, so I'll
;; give a general outline here:
;;   1. Do initial setup, and determine the heading between particle centers
;;      (call it theta).
;;   2. Convert the representation of the velocity of each particle from
;;      speed/heading to a theta-based vector whose first component is the
;;      particle's speed along theta, and whose second component is the speed
;;      perpendicular to theta.
;;   3. Modify the velocity vectors to reflect the effects of the collision.
;;      This involves:
;;        a. computing the velocity of the center of mass of the whole system
;;           along direction theta
;;        b. updating the along-theta components of the two velocity vectors.
;;   4. Convert from the theta-based vector representation of velocity back to
;;      the usual speed/heading representation for each particle.
;;   5. Perform final cleanup and update derived quantities.

to collide-with [ other-particle ] ;; particle procedure
  ;;; PHASE 1: initial setup

  ;; for convenience, grab some quantities from other-particle
  let mass2 [mass] of other-particle
  let speed2 [speed] of other-particle
  let heading2 [heading] of other-particle

  ;; since particles are modeled as zero-size points, theta isn't meaningfully
  ;; defined. we can assign it randomly without affecting the model's outcome.
  let theta (random-float 360)



  ;;; PHASE 2: convert velocities to theta-based vector representation

  ;; now convert my velocity from speed/heading representation to components
  ;; along theta and perpendicular to theta
  let v1t (speed * cos (theta - heading))
  let v1l (speed * sin (theta - heading))

  ;; do the same for other-particle
  let v2t (speed2 * cos (theta - heading2))
  let v2l (speed2 * sin (theta - heading2))



  ;;; PHASE 3: manipulate vectors to implement collision

  ;; compute the velocity of the system's center of mass along theta
  let vcm (((mass * v1t) + (mass2 * v2t)) / (mass + mass2) )

  ;; now compute the new velocity for each particle along direction theta.
  ;; velocity perpendicular to theta is unaffected by a collision along theta,
  ;; so the next two lines actually implement the collision itself, in the
  ;; sense that the effects of the collision are exactly the following changes
  ;; in particle velocity.
  set v1t (2 * vcm - v1t)
  set v2t (2 * vcm - v2t)



  ;;; PHASE 4: convert back to normal speed/heading

  ;; now convert my velocity vector into my new speed and heading
  set speed sqrt ((v1t ^ 2) + (v1l ^ 2))
  set energy (0.5 * mass * speed ^ 2)
  ;; if the magnitude of the velocity vector is 0, atan is undefined. but
  ;; speed will be 0, so heading is irrelevant anyway. therefore, in that
  ;; case we'll just leave it unmodified.
  if v1l != 0 or v1t != 0
    [ set heading (theta - (atan v1l v1t)) ]

  ;; and do the same for other-particle
  ask other-particle [
    set speed sqrt ((v2t ^ 2) + (v2l ^ 2))
    set energy (0.5 * mass * (speed ^ 2))
    if v2l != 0 or v2t != 0
      [ set heading (theta - (atan v2l v2t)) ]
  ]


  ;; PHASE 5: final updates

  ;; now recolor, since color is based on quantities that may have changed
  recolor
  ask other-particle
    [ recolor ]
end 

to recolor  ;; particle procedure
  ifelse speed < (0.5 * 10)
  [
    set color blue
  ]
  [
    ifelse speed > (1.5 * 10)
      [ set color red ]
      [ set color green ]
  ]
end 


;;;
;;; drawing procedures
;;;

;; draws the box

to make-box
  ask patches with [ ((abs pxcor = box-edge) and (abs pycor <= box-edge)) or
                     ((abs pycor = box-edge) and (abs pxcor <= box-edge)) ]
    [ set pcolor yellow ]
end 

;; creates initial particles

to make-particles
  create-particles number-of-particles
  [
    setup-particle
    random-position
    recolor
  ]
  calculate-tick-delta
end 

to setup-particle  ;; particle procedure
  set speed init-particle-speed
  set mass particle-mass
  set energy (0.5 * mass * speed * speed)
  set last-collision nobody
end 

;; place particle at random location inside the box.

to random-position ;; particle procedure
  setxy ((1 - box-edge) + random-float ((2 * box-edge) - 2))
        ((1 - box-edge) + random-float ((2 * box-edge) - 2))
end 

to-report last-n [n the-list]
  ifelse n >= length the-list
    [ report the-list ]
    [ report last-n n butfirst the-list ]
end 


; Copyright 1997 Uri Wilensky.
; See Info tab for full copyright and license.

There are 6 versions of this model.

Uploaded by When Description Download
Uri Wilensky over 11 years ago Updated to NetLogo 5.0.4 Download this version
Uri Wilensky about 12 years ago Updated version tag Download this version
Uri Wilensky almost 13 years ago Updated to NetLogo 5.0 Download this version
Uri Wilensky over 14 years ago Updated from NetLogo 4.1 Download this version
Uri Wilensky over 14 years ago Model from NetLogo distribution Download this version
Uri Wilensky over 14 years ago GasLab Gas in a Box (Perspective Demo) Download this version

Attached files

File Type Description Last updated
GasLab Gas in a Box (Perspective Demo).png preview Preview for 'GasLab Gas in a Box (Perspective Demo)' over 11 years ago, by Uri Wilensky Download

This model does not have any ancestors.

This model does not have any descendants.